1 Eigenvalues and Eigenvectors

1.1 Concepts

1. An eigenvalue eigenvector pair for a square matrix A is a scalar λ and nonzero vector \vec{v} such that $A \vec{v}=\lambda \vec{v}$. To find this, we write $\lambda \vec{v}=\lambda I \vec{v}$ and bring this to the other side to get $(A-\lambda I) \vec{v}=0$. Since \vec{v} is nonzero, this means that $(A-\lambda I) \vec{w}=0$ has at least two solutions (since the trivial solution is a solution), and hence there must be an infinite number of solutions and $\operatorname{det}(A-\lambda I)=0$.
So to find the eigenvalues, we solve $\operatorname{det}(A-\lambda I)=0$. For a particular eigenvalue, to find the associated eigenvector, we have to use Gaussian elimination on $A-\lambda I$ to get the general solution.

1.2 Problems

2. TRUE False Associated to every eigenvalue is an eigenvector and vice versa
3. TRUE False If 2 is an eigenvalue for A, then 4 is an eigenvalue for A^{2}.

Solution: Let \vec{v} be the associated eigenvector so that $A \vec{v}=2 \vec{v}$. Then $A^{2} \vec{v}=$ $A(A \vec{v})=A(2 \vec{v})=2^{2} \vec{v}=4$ so A^{2} has an eigenvalue 4 with eigenvector \vec{v}.
4. TRUE False If $\operatorname{det}(A)=0$, then 0 has to be an eigenvalue of A.

Solution: This satisfies $\operatorname{det}(A-0 I)=\operatorname{det}(A)=0$.
5. True FALSE If 2 is an eigenvalue of A and 3 is an eigenvalue of B, then $2 \cdot 3=6$ is an eigenvalue of $A B$.
6. True FALSE For each eigenvalue, there is only one choice of eigenvector.

Solution: We can choose any multiple of an eigenvector.
7. Find the eigenvalue and associated eigenvectors of $A=\left(\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right)$.

Solution: We take the determinant of $A-\lambda I=\left(\begin{array}{cc}1-\lambda & 0 \\ 1 & 2-\lambda\end{array}\right)$ which is $(1-\lambda)(2-$ $\lambda)-0=(\lambda-1)(\lambda-2)$. Therefore the eigenvalues are 1 and 2 .
The associated eigenvector of 1 is gotten by looking at $A-1 I=A-I=\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right)$ and we want to solve $(A-I) \vec{v}=\overrightarrow{0}$ and one nontrivial solution is $\vec{v}=\binom{1}{-1}$, which is an eigenvector.
For $\lambda=2$, we look at $A-2 I=\left(\begin{array}{cc}-1 & 0 \\ 1 & 0\end{array}\right)$ and a nontrivial eigenvector is $\binom{0}{1}$.
8. Find the eigenvalues and eigenvectors of $\left(\begin{array}{cc}1 & 3 \\ 9 & -5\end{array}\right)$.

Solution: We have to look at $\operatorname{det}(A-\lambda I)=(1-\lambda)(-5-\lambda)-27=\lambda^{2}+4 \lambda-32=$ $(\lambda+8)(\lambda-4)$. So the eigenvalues are $\lambda=4,-8$. For the eigenvalue 4 , an eigenvector is gotten by looking at $A-4 I=\left(\begin{array}{cc}-3 & 3 \\ 9 & -9\end{array}\right)$ and an eigenvector is $\left(\begin{array}{ll}1 & 1\end{array}\right)$. For the eigenvalue -8 , an eigenvector is gotten by looking at $A+8 I=\left(\begin{array}{ll}9 & 3 \\ 9 & 3\end{array}\right)$ and an eigenvector is $\binom{-1}{3}$.
9. Find the eigenvalues of $\left(\begin{array}{ccc}2 & 4 & 4 \\ -1 & 0 & -1 \\ 1 & 0 & 1\end{array}\right)$.

Solution: We take the determinant of $A-\lambda I=\left(\begin{array}{ccc}2-\lambda & 4 & 4 \\ -1 & -\lambda & -1 \\ 1 & 0 & 1-\lambda\end{array}\right)$ which is $-\lambda(\lambda-1)(\lambda-2)$ so the eigenvalues are $\lambda=0,1,2$.

2 Linear Systems of Differential Equations

2.1 Concepts

10. In order to solve a system of linear differential equations, we represent it in the form $\vec{y}^{\prime}=A \vec{y}$. Then we find the eigenvalues of A, say λ_{1}, λ_{2}. If $\lambda_{1} \neq \lambda_{2}$ are real, then we find the eigenvectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}$ and the general solution is of the form $\vec{y}=c_{1} e^{\lambda_{1} t} \overrightarrow{v_{1}}+c_{2} e^{\lambda-2 t} \overrightarrow{v_{2}}$.

2.2 Problems

11. True FALSE If two matrices A, B have the same eigenvalues, then they have the same solutions to $\vec{y}^{\prime}=A \vec{y}$.

Solution: The general solution depends both on the eigenvalues and eigenvectors.
12. Find the general solution to the systems of linear differential equations

$$
\left\{\begin{array}{l}
y_{1}^{\prime}(t)=y_{1}(t)+4 y_{2}(t) \\
y_{2}^{\prime}(t)=3 y_{2}(t)
\end{array}\right.
$$

Solution: Let $A=\left(\begin{array}{ll}1 & 4 \\ 0 & 3\end{array}\right)$. Then letting $\vec{y}=\binom{y_{1}(t)}{y_{2}(t)}$, we have that $\vec{y}=A \vec{y}$. The eigenvalues of A are given by $(1-\lambda)(3-\lambda)=0$ or $\lambda=1,3$. For $\lambda=1$, the eigenvector is $\binom{4}{0}$ and for $\lambda=3$, the eigenvector is given by $\binom{4}{2}$. Thus, the general solution is

$$
\vec{y}=c_{1} e^{t} \vec{v}_{1}+c_{2} e^{3 t} \vec{v}_{2}=\binom{4 c_{1} e^{t}+4 c_{2} e^{3 t}}{2 c_{2} e^{3 t}}=\binom{c_{1} e^{t}+2 c_{2} e^{3 t}}{c_{2} e^{3 t}} .
$$

13. Find the solution to the systems of linear differential equations

$$
\left\{\begin{array}{l}
y_{1}^{\prime}(t)=5 y_{1}(t)-4 y_{2}(t) \\
y_{2}^{\prime}(t)=4 y_{1}(t)-5 y_{2}(t)
\end{array}\right.
$$

with $\vec{y}(0)=\binom{3}{3}$.

Solution: Let $A=\left(\begin{array}{ll}5 & -4 \\ 4 & -5\end{array}\right)$. Then letting $\vec{y}=\binom{y_{1}(t)}{y_{2}(t)}$, we have that $\vec{y}^{\prime}=A \vec{y}$. The eigenvalues of A are given by $(5-\lambda)(-5-\lambda)+16=\lambda^{2}-9=0$ or $\lambda=-3,3$. For $\lambda=-3$, the eigenvector is $\binom{-4}{-8}$ and for $\lambda=3$, the eigenvector is given by $\binom{-4}{-2}$. Thus, the general solution is

$$
\vec{y}=c_{1} e^{-3 t} \vec{v}_{1}+c_{2} e^{3 t} \vec{v}_{2}=\binom{-4 c_{1} e^{-3 t}-4 c_{2} e^{3 t}}{-8 c_{1} e^{-3 t}-2 c_{2} e^{3 t}}=\binom{c_{1} e^{-3 t}+2 c_{2} e^{3 t}}{2 c_{1} e^{-3 t}+c_{2} e^{3 t}} .
$$

Now plugging in the initial conditions give $c_{1}+2 c_{2}=3$ and $2 c_{1}+c_{2}=3$ so $c_{1}=c_{2}=1$ and the solution is $\vec{y}=\binom{e^{-3 t}+2 e^{3 t}}{2 e^{-3 t}+e^{3 t}}$.
14. Verify that $\vec{x}(t)=\left(\begin{array}{c}0 \\ -e^{t} \\ e^{t}\end{array}\right), \vec{y}(t)=\left(\begin{array}{c}e^{2 t} \\ -2 e^{2 t} \\ 0\end{array}\right), \vec{z}(t)=\left(\begin{array}{c}0 \\ e^{3 t} \\ e^{3 t}\end{array}\right)$ are solutions to $\vec{v}^{\prime}=A \vec{v}$ where $A=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 1 \\ 2 & 1 & 2\end{array}\right)$.

Solution: Multiplying gives us $A \vec{x}=\vec{x}, A \vec{y}=2 \vec{y}$ and $A \vec{z}=3 \vec{z}$ which is what we wanted to show since $\vec{x}^{\prime}=\vec{x}, \vec{y}^{\prime}=2 \vec{y}, \vec{z}^{\prime}=3 \vec{z}$.
15. Under the same notation as the previous problem. Write out the system of linear equations that $\vec{v}^{\prime}=A \vec{v}$ represents and find the general solution.

Solution: It represents

$$
\left\{\begin{array}{l}
y_{1}^{\prime}(t)=2 y_{1}(t) \\
y_{2}^{\prime}(t)=2 y_{2}(t)+y_{3}(t) \\
y_{3}^{\prime}(t)=2 y_{1}(t)+y_{2}(t)+2 y_{3}(t)
\end{array} .\right.
$$

The general solution is of the form $c_{1} \vec{x}+c_{2} \vec{y}+c_{3} \vec{z}=\left(\begin{array}{c}c_{2} e^{2 t} \\ -c_{1} e^{t}-2 c_{2} e^{2 t}+c_{3} e^{3 t} \\ c_{1} e^{t}+c_{3} e^{3 t}\end{array}\right)$.
16. Still with the same notation, what are the eigenvalues and eigenvectors of A ?

Solution: The eigenvalues are $1,2,3$ with eigenvectors $\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ -2 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$ respectively.

